Useful Analysis Tipsusage of git hub | ||||||||
Changed: | ||||||||
< < |
| |||||||
> > |
| |||||||
Added: | ||||||||
> > |
| |||||||
Way to copy the sample from different sitevoms-proxy-init xrdcp root://cmseos.fnal.gov//store/user/benwu/CMSDAS/DoubleMu/crab_CMSDAS_Data_analysis_test0/141126_235113/0000/slimMiniAOD_data_MuEle_1.root . Error bar estimation of Two efficiency multiplyy = f * g (f : Eff1, g : Eff2) dy = (@y/@f)df + (@y/@g)dg Relative error dy/y = [(@y/@f)df + (@y/@g)dg]/fg here, y = f*g, so (@y/@f) = g, (@y/@g) = f dy/y = df/f + dg/g |dy| = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y Therefore the error bar of multiplied two variables is sum of the each error of those. Dividing error: y = f/g >> dy = (f/g)' = f'/g - g'/g^2 dy/y = (f/g)'/(f/g) = f'/f -g'/g | dy | = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y efficiency of pairThe factor 2 comes from the from the fact that the two single muon efficiencies that make the pair efficiency are fully correlated. In that case the uncertainty on pair is just the sum of the uncertainties on the single efficiency. You can also simply derive it like this: for eff_pair = eff_single^2 -> err_pair = sqrt( (deff_pair/deff_single)^2 err_single^2 ) = sqrt( (2*eff_single)^2*err_single^2) = 2*eff_single*err_single that's the expression for the absolute uncertainty, to get the relative uncertainty, we just divide by eff_pair -> err_pair/eff_pair = 2*eff_single*err_single/(eff_single^2) = 2*err_single/eff_single sqrt((eA/A)^2 + (eA/A)^2 + 2 (eA/A)^2) = sqrt( 4*(eA/A)^2 ) = 2 * eA/A So, total uncertainty = sqrt( (2*eA_1/A_1)^2 + (2*eA_2/A_2)^2 + (2*eA_2/A_2)^2 ) // for the cases of three efficiencies. R_AA
R_AA = [(d^2_N)/(d_pt * d_eta)]/[<T_NN>(d^2_crX/d_pt*d_eta)] T_NN : nuclear overlap function = N_coll/crX_pp
R_cp
R_cp =[<1/N_coll>|0<cent<5| * (d^2_N)/(d_pt * d_eta)]/[<1/N_coll>|40<cent<60| * (d^2_N)/(d_pt * d_eta)]\ Python Tip
readFiles = cms.untracked.vstring() readFiles.extend( [ '/store/data/BeamCommissioning08/BeamHalo/RECO/CRUZET4_V4P_CSCSkim_trial_v3/0000/00BEE8CD-1181-DD11-8F58-001A4BA82F4C.root' ] ); process.source = cms.Source("PoolSource", fileNames = readFiles ) pPb collision energy calculationsqrt(sNN) = 2*sqrt(E_p * E_pPb) = 2*sqrt(4 * 4 * 82 / 208) = 5.02 TeV-- DongHoMoon - 03 Dec 2010 |
Useful Analysis Tips | ||||||||
Added: | ||||||||
> > |
usage of git hub
| |||||||
Way to copy the sample from different sitevoms-proxy-init xrdcp root://cmseos.fnal.gov//store/user/benwu/CMSDAS/DoubleMu/crab_CMSDAS_Data_analysis_test0/141126_235113/0000/slimMiniAOD_data_MuEle_1.root . Error bar estimation of Two efficiency multiplyy = f * g (f : Eff1, g : Eff2) dy = (@y/@f)df + (@y/@g)dg Relative error dy/y = [(@y/@f)df + (@y/@g)dg]/fg here, y = f*g, so (@y/@f) = g, (@y/@g) = f dy/y = df/f + dg/g |dy| = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y Therefore the error bar of multiplied two variables is sum of the each error of those. Dividing error: y = f/g >> dy = (f/g)' = f'/g - g'/g^2 dy/y = (f/g)'/(f/g) = f'/f -g'/g | dy | = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y efficiency of pairThe factor 2 comes from the from the fact that the two single muon efficiencies that make the pair efficiency are fully correlated. In that case the uncertainty on pair is just the sum of the uncertainties on the single efficiency. You can also simply derive it like this: for eff_pair = eff_single^2 -> err_pair = sqrt( (deff_pair/deff_single)^2 err_single^2 ) = sqrt( (2*eff_single)^2*err_single^2) = 2*eff_single*err_single that's the expression for the absolute uncertainty, to get the relative uncertainty, we just divide by eff_pair -> err_pair/eff_pair = 2*eff_single*err_single/(eff_single^2) = 2*err_single/eff_single sqrt((eA/A)^2 + (eA/A)^2 + 2 (eA/A)^2) = sqrt( 4*(eA/A)^2 ) = 2 * eA/A So, total uncertainty = sqrt( (2*eA_1/A_1)^2 + (2*eA_2/A_2)^2 + (2*eA_2/A_2)^2 ) // for the cases of three efficiencies. R_AA
R_AA = [(d^2_N)/(d_pt * d_eta)]/[<T_NN>(d^2_crX/d_pt*d_eta)] T_NN : nuclear overlap function = N_coll/crX_pp
R_cp
R_cp =[<1/N_coll>|0<cent<5| * (d^2_N)/(d_pt * d_eta)]/[<1/N_coll>|40<cent<60| * (d^2_N)/(d_pt * d_eta)]\ Python Tip
readFiles = cms.untracked.vstring() readFiles.extend( [ '/store/data/BeamCommissioning08/BeamHalo/RECO/CRUZET4_V4P_CSCSkim_trial_v3/0000/00BEE8CD-1181-DD11-8F58-001A4BA82F4C.root' ] ); process.source = cms.Source("PoolSource", fileNames = readFiles ) pPb collision energy calculationsqrt(sNN) = 2*sqrt(E_p * E_pPb) = 2*sqrt(4 * 4 * 82 / 208) = 5.02 TeV-- DongHoMoon - 03 Dec 2010 |
Useful Analysis Tips | ||||||||
Added: | ||||||||
> > |
Way to copy the sample from different sitevoms-proxy-init xrdcp root://cmseos.fnal.gov//store/user/benwu/CMSDAS/DoubleMu/crab_CMSDAS_Data_analysis_test0/141126_235113/0000/slimMiniAOD_data_MuEle_1.root . | |||||||
Error bar estimation of Two efficiency multiplyy = f * g (f : Eff1, g : Eff2) dy = (@y/@f)df + (@y/@g)dg Relative error dy/y = [(@y/@f)df + (@y/@g)dg]/fg here, y = f*g, so (@y/@f) = g, (@y/@g) = f dy/y = df/f + dg/g |dy| = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y Therefore the error bar of multiplied two variables is sum of the each error of those. Dividing error: y = f/g >> dy = (f/g)' = f'/g - g'/g^2 dy/y = (f/g)'/(f/g) = f'/f -g'/g | dy | = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y efficiency of pairThe factor 2 comes from the from the fact that the two single muon efficiencies that make the pair efficiency are fully correlated. In that case the uncertainty on pair is just the sum of the uncertainties on the single efficiency. You can also simply derive it like this: for eff_pair = eff_single^2 -> err_pair = sqrt( (deff_pair/deff_single)^2 err_single^2 ) = sqrt( (2*eff_single)^2*err_single^2) = 2*eff_single*err_single that's the expression for the absolute uncertainty, to get the relative uncertainty, we just divide by eff_pair -> err_pair/eff_pair = 2*eff_single*err_single/(eff_single^2) = 2*err_single/eff_single sqrt((eA/A)^2 + (eA/A)^2 + 2 (eA/A)^2) = sqrt( 4*(eA/A)^2 ) = 2 * eA/A So, total uncertainty = sqrt( (2*eA_1/A_1)^2 + (2*eA_2/A_2)^2 + (2*eA_2/A_2)^2 ) // for the cases of three efficiencies. R_AA
R_AA = [(d^2_N)/(d_pt * d_eta)]/[<T_NN>(d^2_crX/d_pt*d_eta)] T_NN : nuclear overlap function = N_coll/crX_pp
R_cp
R_cp =[<1/N_coll>|0<cent<5| * (d^2_N)/(d_pt * d_eta)]/[<1/N_coll>|40<cent<60| * (d^2_N)/(d_pt * d_eta)]\ Python Tip
readFiles = cms.untracked.vstring() readFiles.extend( [ '/store/data/BeamCommissioning08/BeamHalo/RECO/CRUZET4_V4P_CSCSkim_trial_v3/0000/00BEE8CD-1181-DD11-8F58-001A4BA82F4C.root' ] ); process.source = cms.Source("PoolSource", fileNames = readFiles ) pPb collision energy calculationsqrt(sNN) = 2*sqrt(E_p * E_pPb) = 2*sqrt(4 * 4 * 82 / 208) = 5.02 TeV-- DongHoMoon - 03 Dec 2010 |
Useful Analysis TipsError bar estimation of Two efficiency multiplyy = f * g (f : Eff1, g : Eff2) dy = (@y/@f)df + (@y/@g)dg Relative error dy/y = [(@y/@f)df + (@y/@g)dg]/fg here, y = f*g, so (@y/@f) = g, (@y/@g) = f dy/y = df/f + dg/g |dy| = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y Therefore the error bar of multiplied two variables is sum of the each error of those. Dividing error: y = f/g >> dy = (f/g)' = f'/g - g'/g^2 dy/y = (f/g)'/(f/g) = f'/f -g'/g | dy | = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y efficiency of pairThe factor 2 comes from the from the fact that the two single muon efficiencies that make the pair efficiency are fully correlated. In that case the uncertainty on pair is just the sum of the uncertainties on the single efficiency. You can also simply derive it like this: for eff_pair = eff_single^2 -> err_pair = sqrt( (deff_pair/deff_single)^2 err_single^2 ) = sqrt( (2*eff_single)^2*err_single^2) = 2*eff_single*err_single that's the expression for the absolute uncertainty, to get the relative uncertainty, we just divide by eff_pair -> err_pair/eff_pair = 2*eff_single*err_single/(eff_single^2) = 2*err_single/eff_single sqrt((eA/A)^2 + (eA/A)^2 + 2 (eA/A)^2) = sqrt( 4*(eA/A)^2 ) = 2 * eA/A | ||||||||
Added: | ||||||||
> > | So, total uncertainty = sqrt( (2*eA_1/A_1)^2 + (2*eA_2/A_2)^2 + (2*eA_2/A_2)^2 ) // for the cases of three efficiencies. | |||||||
R_AA
R_AA = [(d^2_N)/(d_pt * d_eta)]/[<T_NN>(d^2_crX/d_pt*d_eta)] T_NN : nuclear overlap function = N_coll/crX_pp
R_cp
R_cp =[<1/N_coll>|0<cent<5| * (d^2_N)/(d_pt * d_eta)]/[<1/N_coll>|40<cent<60| * (d^2_N)/(d_pt * d_eta)]\ Python Tip
readFiles = cms.untracked.vstring() readFiles.extend( [ '/store/data/BeamCommissioning08/BeamHalo/RECO/CRUZET4_V4P_CSCSkim_trial_v3/0000/00BEE8CD-1181-DD11-8F58-001A4BA82F4C.root' ] ); process.source = cms.Source("PoolSource", fileNames = readFiles ) pPb collision energy calculationsqrt(sNN) = 2*sqrt(E_p * E_pPb) = 2*sqrt(4 * 4 * 82 / 208) = 5.02 TeV-- DongHoMoon - 03 Dec 2010 |
Useful Analysis TipsError bar estimation of Two efficiency multiplyy = f * g (f : Eff1, g : Eff2) dy = (@y/@f)df + (@y/@g)dg Relative error dy/y = [(@y/@f)df + (@y/@g)dg]/fg here, y = f*g, so (@y/@f) = g, (@y/@g) = f dy/y = df/f + dg/g |dy| = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y Therefore the error bar of multiplied two variables is sum of the each error of those. Dividing error: y = f/g >> dy = (f/g)' = f'/g - g'/g^2 dy/y = (f/g)'/(f/g) = f'/f -g'/g | dy | = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y efficiency of pairThe factor 2 comes from the from the fact that the two single muon efficiencies that make the pair efficiency are fully correlated. In that case the uncertainty on pair is just the sum of the uncertainties on the single efficiency. You can also simply derive it like this: for eff_pair = eff_single^2 -> err_pair = sqrt( (deff_pair/deff_single)^2 err_single^2 ) = sqrt( (2*eff_single)^2*err_single^2) = 2*eff_single*err_single that's the expression for the absolute uncertainty, to get the relative uncertainty, we just divide by eff_pair -> err_pair/eff_pair = 2*eff_single*err_single/(eff_single^2) = 2*err_single/eff_single sqrt((eA/A)^2 + (eA/A)^2 + 2 (eA/A)^2) = sqrt( 4*(eA/A)^2 ) = 2 * eA/A R_AA
R_AA = [(d^2_N)/(d_pt * d_eta)]/[<T_NN>(d^2_crX/d_pt*d_eta)] T_NN : nuclear overlap function = N_coll/crX_pp
R_cp
R_cp =[<1/N_coll>|0<cent<5| * (d^2_N)/(d_pt * d_eta)]/[<1/N_coll>|40<cent<60| * (d^2_N)/(d_pt * d_eta)]\ Python Tip
readFiles = cms.untracked.vstring() readFiles.extend( [ '/store/data/BeamCommissioning08/BeamHalo/RECO/CRUZET4_V4P_CSCSkim_trial_v3/0000/00BEE8CD-1181-DD11-8F58-001A4BA82F4C.root' ] ); process.source = cms.Source("PoolSource", fileNames = readFiles ) | ||||||||
Added: | ||||||||
> > |
pPb collision energy calculationsqrt(sNN) = 2*sqrt(E_p * E_pPb) = 2*sqrt(4 * 4 * 82 / 208) = 5.02 TeV | |||||||
-- DongHoMoon - 03 Dec 2010 |
Useful Analysis TipsError bar estimation of Two efficiency multiplyy = f * g (f : Eff1, g : Eff2) dy = (@y/@f)df + (@y/@g)dg Relative error dy/y = [(@y/@f)df + (@y/@g)dg]/fg here, y = f*g, so (@y/@f) = g, (@y/@g) = f dy/y = df/f + dg/g |dy| = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y Therefore the error bar of multiplied two variables is sum of the each error of those. Dividing error: y = f/g >> dy = (f/g)' = f'/g - g'/g^2 dy/y = (f/g)'/(f/g) = f'/f -g'/g | dy | = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y efficiency of pairThe factor 2 comes from the from the fact that the two single muon efficiencies that make the pair efficiency are fully correlated. In that case the uncertainty on pair is just the sum of the uncertainties on the single efficiency. You can also simply derive it like this: for eff_pair = eff_single^2 -> err_pair = sqrt( (deff_pair/deff_single)^2 err_single^2 ) = sqrt( (2*eff_single)^2*err_single^2) = 2*eff_single*err_single that's the expression for the absolute uncertainty, to get the relative uncertainty, we just divide by eff_pair -> err_pair/eff_pair = 2*eff_single*err_single/(eff_single^2) = 2*err_single/eff_single sqrt((eA/A)^2 + (eA/A)^2 + 2 (eA/A)^2) = sqrt( 4*(eA/A)^2 ) = 2 * eA/A R_AA
| ||||||||
Changed: | ||||||||
< < | ||||||||
> > | ||||||||
R_AA = [(d^2_N)/(d_pt * d_eta)]/[ | ||||||||
Changed: | ||||||||
< < | ||||||||
> > | ||||||||
R_cp
| ||||||||
Changed: | ||||||||
< < | ||||||||
> > | ||||||||
R_cp =[<1/N_coll>|0<cent<5| * (d^2_N)/(d_pt * d_eta)]/[<1/N_coll>|40<cent<60| * (d^2_N)/(d_pt * d_eta)] | ||||||||
Changed: | ||||||||
< < | ||||||||
> > | ||||||||
Python Tip
| ||||||||
Changed: | ||||||||
< < | ||||||||
> > | ||||||||
readFiles = cms.untracked.vstring() readFiles.extend( [ '/store/data/BeamCommissioning08/BeamHalo/RECO/CRUZET4_V4P_CSCSkim_trial_v3/0000/00BEE8CD-1181-DD11-8F58-001A4BA82F4C.root' ] ); process.source = cms.Source("PoolSource", fileNames = readFiles ) | ||||||||
Changed: | ||||||||
< < | ||||||||
> > | ||||||||
-- DongHoMoon - 03 Dec 2010 |
Useful Analysis TipsError bar estimation of Two efficiency multiplyy = f * g (f : Eff1, g : Eff2) dy = (@y/@f)df + (@y/@g)dg Relative error dy/y = [(@y/@f)df + (@y/@g)dg]/fg here, y = f*g, so (@y/@f) = g, (@y/@g) = f dy/y = df/f + dg/g |dy| = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y Therefore the error bar of multiplied two variables is sum of the each error of those. Dividing error: y = f/g >> dy = (f/g)' = f'/g - g'/g^2 dy/y = (f/g)'/(f/g) = f'/f -g'/g | dy | = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y efficiency of pairThe factor 2 comes from the from the fact that the two single muon efficiencies that make the pair efficiency are fully correlated. In that case the uncertainty on pair is just the sum of the uncertainties on the single efficiency. You can also simply derive it like this: for eff_pair = eff_single^2 -> err_pair = sqrt( (deff_pair/deff_single)^2 err_single^2 ) = sqrt( (2*eff_single)^2*err_single^2) = 2*eff_single*err_single that's the expression for the absolute uncertainty, to get the relative uncertainty, we just divide by eff_pair -> err_pair/eff_pair = 2*eff_single*err_single/(eff_single^2) = 2*err_single/eff_single sqrt((eA/A)^2 + (eA/A)^2 + 2 (eA/A)^2) = sqrt( 4*(eA/A)^2 ) = 2 * eA/A R_AA
R_AA = [(d^2_N)/(d_pt * d_eta)]/[
R_cp
R_cp =[<1/N_coll>|0 | ||||||||
Changed: | ||||||||
< < | Python | |||||||
> > | ||||||||
Added: | ||||||||
> > | Python Tip | |||||||
readFiles = cms.untracked.vstring() readFiles.extend( [ '/store/data/BeamCommissioning08/BeamHalo/RECO/CRUZET4_V4P_CSCSkim_trial_v3/0000/00BEE8CD-1181-DD11-8F58-001A4BA82F4C.root' ] ); process.source = cms.Source("PoolSource", fileNames = readFiles )-- DongHoMoon - 03 Dec 2010 |
Useful Analysis TipsError bar estimation of Two efficiency multiplyy = f * g (f : Eff1, g : Eff2) dy = (@y/@f)df + (@y/@g)dg Relative error dy/y = [(@y/@f)df + (@y/@g)dg]/fg here, y = f*g, so (@y/@f) = g, (@y/@g) = f dy/y = df/f + dg/g |dy| = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y Therefore the error bar of multiplied two variables is sum of the each error of those. Dividing error: y = f/g >> dy = (f/g)' = f'/g - g'/g^2 dy/y = (f/g)'/(f/g) = f'/f -g'/g | dy | = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y efficiency of pairThe factor 2 comes from the from the fact that the two single muon efficiencies that make the pair efficiency are fully correlated. In that case the uncertainty on pair is just the sum of the uncertainties on the single efficiency. You can also simply derive it like this: for eff_pair = eff_single^2 -> err_pair = sqrt( (deff_pair/deff_single)^2 err_single^2 ) = sqrt( (2*eff_single)^2*err_single^2) = 2*eff_single*err_single that's the expression for the absolute uncertainty, to get the relative uncertainty, we just divide by eff_pair -> err_pair/eff_pair = 2*eff_single*err_single/(eff_single^2) = 2*err_single/eff_single sqrt((eA/A)^2 + (eA/A)^2 + 2 (eA/A)^2) = sqrt( 4*(eA/A)^2 ) = 2 * eA/A R_AA
R_AA = [(d^2_N)/(d_pt * d_eta)]/[
R_cp
R_cp =[<1/N_coll>|0 | ||||||||
Added: | ||||||||
> > | Python
readFiles = cms.untracked.vstring() readFiles.extend( [ '/store/data/BeamCommissioning08/BeamHalo/RECO/CRUZET4_V4P_CSCSkim_trial_v3/0000/00BEE8CD-1181-DD11-8F58-001A4BA82F4C.root' ] ); process.source = cms.Source("PoolSource", fileNames = readFiles ) | |||||||
-- DongHoMoon - 03 Dec 2010 |
Useful Analysis TipsError bar estimation of Two efficiency multiplyy = f * g (f : Eff1, g : Eff2) dy = (@y/@f)df + (@y/@g)dg Relative error dy/y = [(@y/@f)df + (@y/@g)dg]/fg here, y = f*g, so (@y/@f) = g, (@y/@g) = f dy/y = df/f + dg/g |dy| = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y Therefore the error bar of multiplied two variables is sum of the each error of those. Dividing error: y = f/g >> dy = (f/g)' = f'/g - g'/g^2 dy/y = (f/g)'/(f/g) = f'/f -g'/g | dy | = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y | ||||||||
Added: | ||||||||
> > |
efficiency of pairThe factor 2 comes from the from the fact that the two single muon efficiencies that make the pair efficiency are fully correlated. In that case the uncertainty on pair is just the sum of the uncertainties on the single efficiency. You can also simply derive it like this: for eff_pair = eff_single^2 -> err_pair = sqrt( (deff_pair/deff_single)^2 err_single^2 ) = sqrt( (2*eff_single)^2*err_single^2) = 2*eff_single*err_single that's the expression for the absolute uncertainty, to get the relative uncertainty, we just divide by eff_pair -> err_pair/eff_pair = 2*eff_single*err_single/(eff_single^2) = 2*err_single/eff_single sqrt((eA/A)^2 + (eA/A)^2 + 2 (eA/A)^2) = sqrt( 4*(eA/A)^2 ) = 2 * eA/A | |||||||
R_AA
R_AA = [(d^2_N)/(d_pt * d_eta)]/[
R_cp
R_cp =[<1/N_coll>|0 |
Useful Analysis TipsError bar estimation of Two efficiency multiplyy = f * g (f : Eff1, g : Eff2) dy = (@y/@f)df + (@y/@g)dg Relative error dy/y = [(@y/@f)df + (@y/@g)dg]/fg here, y = f*g, so (@y/@f) = g, (@y/@g) = f dy/y = df/f + dg/g |dy| = sqrt( (df/f)^2 + (dg/g)^2 ) | ||||||||
Changed: | ||||||||
< < | final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 ) | |||||||
> > | final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y | |||||||
Therefore the error bar of multiplied two variables is sum of the each error of those. Dividing error: y = f/g >> dy = (f/g)' = f'/g - g'/g^2 dy/y = (f/g)'/(f/g) = f'/f -g'/g | dy | = sqrt( (df/f)^2 + (dg/g)^2 ) | ||||||||
Changed: | ||||||||
< < | final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 ) | |||||||
> > | final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 )*y | |||||||
R_AA
R_AA = [(d^2_N)/(d_pt * d_eta)]/[
R_cp
R_cp =[<1/N_coll>|0 |
Useful Analysis TipsError bar estimation of Two efficiency multiplyy = f * g (f : Eff1, g : Eff2) dy = (@y/@f)df + (@y/@g)dg Relative error dy/y = [(@y/@f)df + (@y/@g)dg]/fg here, y = f*g, so (@y/@f) = g, (@y/@g) = f | ||||||||
Changed: | ||||||||
< < | dy/y = df/f + dg/g = Err_f + Err_g | |||||||
> > | dy/y = df/f + dg/g | |||||||
Added: | ||||||||
> > | |dy| = sqrt( (df/f)^2 + (dg/g)^2 ) final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 ) | |||||||
Therefore the error bar of multiplied two variables is sum of the each error of those. Dividing error: | ||||||||
Changed: | ||||||||
< < | (x + dx)/(y + dy) = q + dq, q = x/y dq/q = dx/x + dy/y, dq = (dx/x + dy/y)*q dq = (dx/x + dy/y)x/y | |||||||
> > | y = f/g >> dy = (f/g)' = f'/g - g'/g^2 dy/y = (f/g)'/(f/g) = f'/f -g'/g | dy | = sqrt( (df/f)^2 + (dg/g)^2 ) | |||||||
Added: | ||||||||
> > | final value is y + | dy | = y + sqrt( (df/f)^2 + (dg/g)^2 ) | |||||||
Deleted: | ||||||||
< < | so, (x + dx)/(y + dy) = q + (dx/x + dy/y)*q | |||||||
R_AA
R_AA = [(d^2_N)/(d_pt * d_eta)]/[
R_cp
R_cp =[<1/N_coll>|0 |
Useful Analysis TipsError bar estimation of Two efficiency multiplyy = f * g (f : Eff1, g : Eff2) dy = (@y/@f)df + (@y/@g)dg Relative error dy/y = [(@y/@f)df + (@y/@g)dg]/fg here, y = f*g, so (@y/@f) = g, (@y/@g) = f dy/y = df/f + dg/g = Err_f + Err_g Therefore the error bar of multiplied two variables is sum of the each error of those. | ||||||||
Added: | ||||||||
> > | Dividing error: (x + dx)/(y + dy) = q + dq, q = x/y dq/q = dx/x + dy/y, dq = (dx/x + dy/y)*q dq = (dx/x + dy/y)x/y so, (x + dx)/(y + dy) = q + (dx/x + dy/y)*q | |||||||
R_AA
R_AA = [(d^2_N)/(d_pt * d_eta)]/[
R_cp
R_cp =[<1/N_coll>|0 |
Useful Analysis TipsError bar estimation of Two efficiency multiplyy = f * g (f : Eff1, g : Eff2) dy = (@y/@f)df + (@y/@g)dg Relative error dy/y = [(@y/@f)df + (@y/@g)dg]/fg here, y = f*g, so (@y/@f) = g, (@y/@g) = f dy/y = df/f + dg/g = Err_f + Err_g Therefore the error bar of multiplied two variables is sum of the each error of those. | ||||||||
Changed: | ||||||||
< < | ||||||||
> > | ||||||||
Added: | ||||||||
> > | R_AA
R_AA = [(d^2_N)/(d_pt * d_eta)]/[
R_cp
R_cp =[<1/N_coll>|0 | |||||||
-- DongHoMoon - 03 Dec 2010 |
Useful Analysis TipsError bar estimation of Two efficiency multiplyy = f * g (f : Eff1, g : Eff2) dy = (@y/@f)df + (@y/@g)dg Relative error dy/y = [(@y/@f)df + (@y/@g)dg]/fg here, y = f*g, so (@y/@f) = g, (@y/@g) = f dy/y = df/f + dg/g = Err_f + Err_g Therefore the error bar of multiplied two variables is sum of the each error of those.-- DongHoMoon - 03 Dec 2010 |